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Abstract. Mechanical operations in proximity to cables present considerable risks to the stability
of power transmission and the reliability of energy supply systems. As an advanced intelligent
sensing technique, Distributed Fiber Optic Sensing (DFOS) has the capability to detect and
identify potential external hazards affecting cables. However, due to the massive volume of
sensing data, existing studies primarily rely on classification algorithms to distinguish threat
events, lacking efficient end-to-end detection algorithms for differentiation and localization. This
constraint results in inefficient information usage and limited real-time responsiveness. To
overcome these challenges, this study introduces a high-performance detection algorithm that
integrates multi-scale information fusion. First, an attention mechanism called MRFA is
proposed to achieve effective feature extraction, which is characterized by its flexibility and
multi-receptive fields. Second, an innovative Information Dialysis Module (DM) is proposed to
enhance the efficiency of inter-layer information filtering in detection models. Finally, the
proposed methods are integrated into an improved YOLOv8 framework. Experimental
comparisons across multiple datasets validate the proposed method’s effectiveness and
efficiency, demonstrating its capability for real-time surveillance and smart recognition in cable
security applications.

1. Introduction
Electricity is vital for modern industry and national energy supply. In special areas like towns, farmlands,
and nature reserves, transmission cables are often buried underground. Damage to these cables can lead
to severe safety incidents, including economic losses, casualties, and environmental harm. Traditional
warning methods, such as stakes and signs, are costly and fail to provide early warnings. Real-time
monitoring of intrusion events is essential to issue timely alerts and prevent potential threats.

Distributed optical fiber sensing (DOFS) is an advanced technique that leverages the backscattered
Rayleigh signal within a single optical fiber to detect and measure environmental physical parameters
along its length. Additionally, underground cables are often buried alongside communication optical
fibers, enabling the monitoring of threat events near the cables without requiring additional fiber
installation. With benefits such as long sensing distances, anti-interference capabilities, and low
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installation costs, distributed fiber optic sensing systems have emerged as promising solutions for
geophysics and linear infrastructure monitoring [1].

DOFS can collect rich data, which provides a solid foundation for AI modeling. Zhu et al. [2]
introduced a pipeline radial threat recognition model that integrates multidimensional information fusion
with a broad learning system (MIFBLS) to improve energy pipeline security. The study addresses
limitations in real-time performance and information utilization in distributed acoustic sensing (DAS)
systems, leading to improved signal processing, feature extraction, and incremental learning. He et al.
[3] developed a two-stage recognition network and carried out field experiments to evaluate its accuracy
in identifying five types of intrusion events, including animal and human intrusions as well as
mechanical excavation, achieving an average recognition rate of 97.04%. In addition, Yang et al. [4]
introduced a semi-supervised learning approach for remote pipeline intrusion monitoring, significantly
enhancing the detection and localization of intrusion events even under low signal-to-noise ratio
conditions.

However, most of the above research methods rely on image classification algorithms for detection,
making the detection performance dependent on segmenting high-quality raw signal slices and unable
to achieve classification and localization within the algorithm. Therefore, it is necessary to employ
object detection methods to identify the types and locations of threat events from large volumes of
sensing data. However, object detection algorithms need to be adapted to accommodate the massive data
characteristics of fiber optic sensing as much as possible.

To fulfill the high-efficiency detection demands in Distributed Fiber Optic Sensing (DFOS)
applications, this paper presents a target detection model incorporating multi-scale information fusion.
Initially, a plug-and-play Multi-Receptive Field Attention mechanism (MRFA) is introduced to enhance
feature extraction efficiency within the object detection framework. Next, we propose an innovative
Information Dialysis Module (DM), which adopts a novel high-efficiency filtering framework to
improve parameter efficiency. Finally, the proposed methods are integrated into an improved YOLOv8
framework. Comparative evaluations on public and real-world cable monitoring datasets show that the
proposed method improves mAP by 3%-5% while reducing the number of parameters by nearly 50%
compared to models with comparable performance.

The key contributions of this study are as follows:
1. To enhance feature extraction efficiency in object detection models, we introduce a Multi-

Receptive Field Attention mechanism (MRFA), which leverages depth-wise separable convolutions for
cross-spatial learning. It improves feature extraction efficiency with minimal parameter overhead.

2. To optimize baseline network architectures, we propose an Information Dialysis Module (DM)
that incorporates design principles such as hierarchical feature aggregation and cross-stage partial
connections. This architectural improvement enhances the utilization efficiency of learnable parameters.

3. To integrate our proposed methods into YOLO, we present an innovative object detection
framework that combines the DM module and MRFA attention mechanism. In object detection tasks,
this framework significantly enhances the mean average precision (mAP) of detection.

2. Related work
Related work will be introduced from three aspects: Object Detection, Architectures Design, and
Attention Mechanism.

2.1. Object detection
Object detection, which is a fundamental task in computer vision, focuses on detecting and pinpointing
the locations of objects within images. Convolutional neural networks (CNNs) have emerged as a
primary tool for real-time detection, offering a good trade-off between performance and efficiency, with
the YOLO (You Only Look Once) models being particularly prominent[5]. Introduced in 2016,
YOLOv1 pioneered single-stage detection with anchor boxes, and YOLOv2 improved localization
accuracy. YOLOv3 advanced the field with novel loss functions like CIoU and GIoU and multi-scale
feature extraction. YOLOv4 introduced the CSPDarknet53 framework, enhancing both accuracy and
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speed. YOLOv5 refined the CSP approach, achieving an impressive 200 FPS for real-time applications.
Subsequent versions, YOLOv6 and YOLOv7, further optimized detection accuracy and inference
efficiency, with YOLOv7 excelling in speed and accuracy through composite scaling methods. The
latest, YOLOv8, introduced anchor-free models, maintaining high precision with a remarkable 280 FPS.
New efficient modules are constantly being proposed in the YOLO algorithm, but there is still a lack of
further innovation in its architecture. This paper aims to make innovations in two aspects: enhancing
feature extraction through the introduction of an efficient attention mechanism, and improving feature
fusion with the proposal of an Information Dialysis Module.

2.2. Architectures design
Efficient and high-quality network architecture design has always been a goal for researchers. In the
area of designing convolutional neural network (CNN) architectures, ResNeXt first demonstrated that
cardinality is more effective than width and depth dimensions. DenseNet links the output features of all
previous layers to serve as input for the subsequent layer, a technique that can be viewed as maximizing
cardinality. CSPNet proposed cross-stage partial networks to optimize redundant gradient information.
It enhances the diversity of gradients by combining feature maps from both the early and late stages of
the network. Gold-YOLO [6] suggested that feature pyramid networks (FPN) and path aggregation
networks (PANet) merely mitigate the issue of information fusion and offer a more sophisticated gather-
and-distribute (GD) mechanism, which improves multi-scale feature fusion through convolutional and
self-attention operations. However, the work of Gold-YOLO is primarily applied to neck feature fusion
architectures. The issue of feature fusion still exists in the earlier backbone networks. These architectural
design works inspire us to believe that the key to improving feature fusion capability lies in aggregating
and reintegrating multi-level feature information.

2.3. Attention mechanism
The attention mechanism improves feature extraction, and it typically includes three primary types:
channel attention, spatial attention, and a combination of both channel and spatial attention. SE
(Squeeze-and-Excitation) emphasizes the role of inter-dimensional interactions by assigning different
attention weights to different channels. The Convolutional Block Attention Module (CBAM) builds
cross-channel and cross-spatial relationships by leveraging the semantic dependencies between the
spatial and channel dimensions of feature maps, showing the ability to improve features by incorporating
cross-dimensional attention weights into the input. The Efficient Multi-scale Attention (EMA) [7]
introduces an innovative multi-scale attention module that minimizes computational costs by
restructuring certain channels into the batch dimension and organizing the channel dimensions into
several sub-features, ensuring a balanced distribution of spatial semantic features across each feature
group. However, the cross-spatial learning strategy in EMA cannot fuse larger receptive field spatial
information into the channel dimension. The MRFA (Multi-Receptive Field Attention) proposed in this
paper efficiently integrates spatial information from multiple receptive fields into the channel dimension
through an optimized architecture.

3. Method
This section offers a summary of the MRFA, DM module, and the enhanced YOLO architecture.

3.1. Multi-receptive field attention (MRFA)
The MRFA attention module incorporates 3×3, 5×5, and 7×7 depthwise separable convolution kernels
within the 3×3 branch to capture multi-scale feature representations across different layers. Additionally,
feature maps of different depths are transmitted to the next stage through three distinct information flows.
Consequently, MRFA not only captures information across channels to modulate the significance of
different channels, but also maintains multi-scale spatial structure and semantic information within the
channels. As shown in Figure 1, this illustrates the structure of the proposed MRFA.
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When a feature map passes through the MRFA, the first step is grouping. During the grouping process,
the feature map is divided along the channel dimension into different groups, and the feature maps from
different groups are processed in parallel, improving computational efficiency. Then, within each group,
the feature map undergoes four distinct branches. One branch remains unchanged, while the other three
branches participate in extracting weights for reconstruction across different receptive fields and
dimensions. Finally, the obtained weights are multiplied with the original feature map to produce the
adjusted feature map with the final weights.

It is important to note that among the three branches involved in weight reconstruction, the X-average
pooling branch and the Y-average pooling branch belong to the same category of weight adjustment
methods, while the rightmost multi-receptive field branch belongs to another specialized information
modulation method. The weight adjustment along the X or Y directions is mainly achieved by reducing
the dimensionality of the feature map in the spatial direction along a certain axis to extract the weights,
and its characteristic is that it is flattened. In contrast, the multi-receptive field branch we emphasize
achieves a three-dimensional weight extraction through the extraction of Multi-layered spatial
information. It is described as three-dimensional because, before performing the flattening
dimensionality reduction, it uses efficient depthwise separable convolutions stacked into a feature
pyramid-like structure. This enables it to capture information at different scales, which is then
incorporated into the final weight reconstruction process.
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Figure 1. The architecture of the proposed MRFA.

3.2. Design of the DM module
We compare the evolution of the Bottleneck structure from YOLOv3 to YOLOv5 and then to YOLOv8.
First, the channel compression ratio has been adjusted to 1, and the initial 1×1 standard convolution has
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been replaced by a 3×3 convolution layer. It is evident that the Bottleneck-like structure increasingly
resembles a multi-layer feature pyramid structure, with the only difference being that the feature map
scale does not decrease as the number of layers increases. Inspired by this, we designed an internal
module in the channel dimension to enable information interaction and filtering along this dimension,
as shown in Figure 2.
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Figure 2. DM module. (a) Placement of the DM module in the backbone network; (b) Detailed
structural design of the DM module.

The developers of YOLOv7 introduced an extension of ELAN to improve the network's learning
capacity while maintaining the original gradient pathways. In the design of our DM module, we aimed
to adhere to the principles of excellent architectures like ELAN. Specifically, our strategy includes using
multiple segmentation operations to divide information flows, inspired by the CSPNet concept.
Additionally, we designed a three-layer feature pyramid structure to provide a semantic summary of the
current input feature map. Each layer partitions a portion of the information flow and directly
incorporates it into the final integration stage. This not only retains the semantic information of each
layer but also further increases the channel base.

When a feature map passes through the DM module, it first undergoes a standard convolution module.
After this, the input channel number is adjusted to match the output channel number. The input and
output channel numbers serve as variable parameters for the DM module, allowing it to connect two
modules with either the same or different channel numbers. This flexibility enables the DM module to
be seamlessly inserted into any structure of a detection network. Next, after passing through the first
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standard convolution module, the feature map splits into two branches. One branch remains unchanged,
while the other participates in a more complex feature fusion process. These two branches are stacked
into a feature map with twice the output channel number, and after passing through the final standard
convolution module, the channel count is halved, producing the final output of the DM module.

It is important to note that this more complex feature fusion process has a configurable repetition
parameter, n, which can be selected according to different requirements. In this feature fusion module,
the input feature map undergoes a split operation after each standard convolution block. The split
operation divides half of the output channels and only allows half of the channels to flow into the next
layer. This helps control the scale of the feature map entering deeper layers, preventing excessive
computational resource consumption, while still preserving the original features at each layer for the
final output selection. When the number of channels in the feature map is reduced to one-quarter of the
original, we use an MRFA module to perform lightweight feature fusion, which is crucial for improving
the performance of the network model.

3.3. Scheme for inserting the DM module
The Dialysis theory highlights that the absence of efficient filtering mechanisms between layers limits
the performance of multi-layer neural networks. The DM module is thus positioned before information
splitting and after aggregation, preserving the original algorithm structure to prevent new chaotic flows.
In the YOLOv8n-DM detector, the Backbone-Neck-Head paradigm is followed, retaining the Head for
final detection while reconstructing the Backbone and Neck by integrating the DM module.

As illustrated in Figure 3, the DM module is placed after each change in feature map scale within the
Backbone to improve information filtering across various semantic levels. In the Neck, the DM module
is placed after feature fusion to filter simultaneous information flows from adjacent semantic levels.

It should be noted that there are two types of DM modules within the entire object detection network
structure. One type is positioned after standard convolution blocks, primarily located in the Backbone.
A notable characteristic of this type is that the input channel number is smaller than the output channel
number. The other type is placed after concat modules, where it can normalize the output channel
number. This type mainly focuses on summarizing and fusing the information after concatenation.

4. Experimental results and analyses
This section will concentrate on three key areas: evaluation metrics, datasets, and the specific results of
comparative experiments along with their analysis.

4.1. Model performance evaluation metrics
In object detection, model performance is commonly assessed using the mean Average Precision (mAP),
which is determined by the area under the Precision (P) and Recall (R) curves. Precision (P) is defined
as:

FPTP
TPP
∗

< (1)

where TP  denotes true positives and FP  denotes false positives. Precision measures the likelihood
of the model correctly identifying positive instances. Recall (R) is defined as:

FNTP
TPR
∗

< (2)

where FN  denotes false negatives. Recall indicates how many objects the model correctly identifies.
When calculating mAP, the size of the Intersection over Union (IoU) is used as a criterion. The closer
the IoU is to 1, the more accurate the detection box is. For each different IoU threshold, mAP can be
calculated for different categories. When the mean Average Precision is calculated at an Intersection
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over Union (IoU) threshold of 0.5, the resulting value is referred to as 50@mAP . The specific
definition is as follows:

N
iAP
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N
i <<

)(
50@ 1 (3)
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Figure 3. The figure illustrates the overall design scheme for inserting the DM module into the
YOLO series v8n algorithm.

where N  denotes the number of classes, and )(iAP  denotes the Average Precision ( AP ) for class
i . AP represents the accuracy of a single class, and its calculation involves generating Precision-Recall
curves and computing the area under the curve. 95:50@mAP  represents the average precision over
the range of Intersection over Union (IoU) thresholds from 0.5 to 0.95. It offers a thorough evaluation
of the model's performance at various IoU thresholds. The specific definition is as follows:

N
iAP

mAP
N
it

10
)(

95:50@ 1
95.0

5.0  <<< (4)

4.2. Dataset
Firstly, we evaluate our method using two public datasets: NEU-DET for industrial defect detection and
PASCAL VOC2012 for general computer vision tasks. Additionally, we collect monitoring data from
real-world wind power underground cable scenarios, covering various safety events like excavator
operation, vehicle movement, and manual excavation. Around 1600 processed raw signals are used for
training the detection network. Specifically, the distributed fiber optic sensor data acquisition card
collects tens of thousands of sampling points on the entire optical fiber at a rate of 2000HZ, which can
eventually be processed into a spatiotemporal graph with the horizontal axis representing the spatial
direction and the vertical axis representing the time direction. Different events correspond to different
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spatiotemporal graphs. The labeled dataset is put into the target detection model for training, and the
obtained model parameters are used for inference of unlabeled data.

4.3. Results
The experimental results focus on three aspects: the effectiveness of the DM module, the MRFA ablation
study, and detection performance on real distributed fiber optic sensing data. Table 1 shows that our
method improves performance by 3% to 5% while reducing the parameter size by about 50% compared
to similar models.

Table 1. Performance comparison of baseline models with and without the DM module.

Models Parameters/M Cost/GFLOPs
VOC NEU-DET

mAP@50 mAP@50:95 mAP@50 mAP@50:95
V8n 3.16 8.9 0.6473 0.4635 0.743 0.400
V8n-

DM(our) 6.30 15.8 0.6875 0.4984 0.763 0.416

V8s 11.17 28.8 0.7001 0.5092 0.746 0.411
V3n 3.88 11.2 0.6361 0.4457 0.746 0.394

V3-DM(our) 6.42 18.7 0.6660 0.4730 0.735 0.399
V3s 14.60 40.3 0.6962 0.5042 0.739 0.405
V5n 2.51 7.1 0.6280 0.4340 0.728 0.394
V5n-

DM(our) 6.28 17.0 0.6840 0.4940 0.746 0.408

V5s 9.13 24.1 0.6939 0.4910 0.718 0.401
V6n 4.24 11.9 0.6387 0.4639 0.752 0.408
V6n-

DM(our) 6.66 19.2 0.6720 0.4900 0.757 0.413

V6s 16.31 44.2 0.6929 0.5110 0.746 0.416

Table 2 shows that incorporating MRFA improves performance by 1% to 2% with minimal additional
parameters and computation.

Table 2. Performance comparison of models with and without the MRFA module.

Models MRFA Parameters/M Cost/GFLOPs
VOC NEU-DET

mAP@50 mAP@50:95 mAP@50 mAP@50:95

V8n-DM
√ 6.07 16.0 0.688 0.498 0.763 0.416

6.06 18.8 0.679 0.492 0.751 0.395

V3n-DM
√ 6.78 20.6 0.666 0.473 0.735 0.399

6.77 20.3 0.663 0.472 0.755 0.375

V5n-DM
√ 6.27 16.9 0.684 0.494 0.746 0.408

6.27 16.7 0.679 0.497 0.735 0.407

V6n-DM
√ 6.91 19.5 0.672 0.490 0.757 0.413

6.91 19.2 0.667 0.485 0.756 0.413

Table 3 displays the performance of our proposed method on an actual distributed fiber optic sensing
dataset, showing that the DM module consistently strikes a better balance between efficiency and
accuracy.
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Table 3. Evaluation of the proposed method's performance on the DFOS dataset.

Models Parameters/M Cost/GFLOPs mAP@50 mAP@50:95
V8n 3.16 8.9 0.772 0.498

V8n-DM(our) 6.30 15.8 0.807 0.512
V8s 11.17 28.8 0.811 0.514

5. Conclusion
This paper develops an object detection architecture applicable to distributed fiber optic sensing data,
specifically incorporating the Multi-Receptive Field Attention mechanism (MRFA) and the Information
Dialysis Module (DM). Experimental results demonstrate that this architecture achieves a 3% to 5%
performance improvement while maintaining only about 50% of the parameter size of models with
similar accuracy. Moreover, the proposed method can be seamlessly adapted to different computer
vision tasks to deliver optimal performance. We hope the proposed structure provides valuable insights
for CNN architecture design.
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